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Abstract

Sombor index is a new geometric background of graph invariants and is also called a valency-
based topological descriptor. It is computed by taking the radical of the sum of the squared
degrees of two adjacent vertices within a graph. The Sombor polynomial also involves the de-
grees of two adjacent vertices where its first order derivative at x is one, is equal to the Sombor
index. Meanwhile, in a power graph, two different vertices are connected by an edge if and
only if one is the power of the other. The graph’s vertex set consists of all the elements in a
group. In this study, the Sombor index and Sombor polynomial of the power graph for some
finite non-abelian groups are determined by using their definitions. The dihedral, generalized
quaternion, and quasi-dihedral groups are considered. The generalization of the power graph
for the quasi-dihedral groups are also found.
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1 Introduction

Topological indices are numerical values that reveal the important details related to the con-
nectivity or topological structure of a molecular network. They have a vital function in different
areas of chemistry and related disciplines, including drug design [3], chemical property predic-
tion, quantitative structure-activity relationship (QSAR) and quantitative structure-property re-
lationship (QSPR) studies [10]. One of the most well-known topological indices is the Wiener
index, also known as the Wiener number or the sum of all pairwise distances between atoms in a
molecule [25]. TheWiener index reflects the overall branching and connectivity of a molecule and
has applications in studying molecular reactivity, boiling points, and chromatographic retention
times. In addition, other significant topological indices include the Randić index [11, 14], Zagreb
indices [21, 27], Balaban index [9], and eccentric connectivity index [17, 20]. These indices capture
different aspects of a molecular graph’s structure, such as atom degree, atom connectivity, and the
number of cycles. They can be used to predict physicochemical properties, biological activities,
and other molecular properties [15].

Applications for topological indices have been explored in environmental chemistry, drug de-
velopment, toxicology, andmaterials research.They provide insightful information on the connec-
tion between molecular structure and characteristics, assisting scientists in developing and refin-
ing novel molecules [4]. In the discipline of chemistry, molecules can be understood as graphs
derived from graph theory, in which the chemical bonds are represented by edges, and atoms
by vertices. The structural representation of molecules is provided through graphs that are also
called molecular graphs.

The research on topological indices attracts much attention among chemists and mathemati-
cians. In the past decades, researchers focused on developing new types of topological indices,
approximating some molecules’ physical and chemical properties and determining their correla-
tions using statistical methods. Recently, the research has started to evolve the topological index
of graphs in general. However, the graphs related to groups are important in understanding their
algebraic and symmetrical properties, in which the properties are very useful in studying the
properties of molecular graphs in chemistry.

In this paper, a recently developed topological index, namely the Sombor index is determined
for a power graph associated to some finite non-abelian groups, specifically the dihedral groups,
generalized quaternion groups and quasi-dihedral groups. Then, the Sombor polynomials of the
power graph for these groups are also found. Some properties and generalization of the power
graph are presented in the next section.

2 Literature Review

Some definitions and fundamental ideas pertaining to the purview of this study are provided
in this section. This research involves three fields in mathematics namely topological index, graph
theory, and group theory. Also stated are the preliminary results that will be utilized to proof the
primary theorems. This paper focuses on a geometric approach for a topological index based on
degree, which is the Sombor index [13], defined as follows:

SO(Γ) =
∑

r,s∈ϵ(Γ)

√
σ(r)2 + σ(s)2,
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where Γ is a simple connected graph, ϵ(Γ) is the edges in graph Γ, σ(r) and σ(s) are the degree of
vertices r and s, respectively.

Gutman [13] established the Sombor index by applying the geometric method to the degree-
based topological indices. Cruz et al. [8] have provided a characterization of the Sombor index
of extremal graphs, including the chemical graphs, chemical trees, and hexagonal systems. Then,
Mohammadi et al. [19] have discovered that the molecular masses of the alkane, alkyl, and an-
nulene series and the Sombor index have a strong correlation. In 2022, Oboudi [22] has studied
on connected non-semiregular bipartite graphs with integer Sombor index and the infinite num-
ber of connected 3-degree bipartite graph with integer Sombor index. Gowtham and Hussin [12]
extended the research to reverse Sombor index for Bistar and Corona product of graph. Recently,
the Sombor polynomial of a graph has been established by [16], where the degree of polynomial
is always an integer. Its definition is stated as follows:

Definition 2.1. [16] Sombor Polynomial
Let Γ be a simple connected graph. The Sombor polynomial of Γ is defined as,

SO(Γ;x) =
∑

r,s∈ϵ(Γ

1√
σ(r)2 + σ(s)2

xσ(r)2+σ(s)2 ,

where σ(r) and σ(s) are the degree of the vertex r and s, respectively.

In graph theory, graph ismade up of a set of vertices and a set of edges, where the edge connects
the two vertices. Various types of graphs have been developed which include the power graph,
as defined in Definition 2.3. Some propositions on graph theory are presented in the following to
prove the main theorems.

Definition 2.2. [24] Complete Graph
An undirected graph that has a unique edge connecting each pair of different vertices is said to be complete.

Definition 2.3. [5] Power Graph
A power graph is an undirected graph where two distinct vertices r and s are adjacent if and only if ri = s
or si = r, where i ∈ Z+.

A significant amount of work has been done on power graph research in the past decade. In
2021, Kumar et al. [18] have provided a survey on the relation of power graph with some other
connected graphs such as Cayley graph. In addition, the power graphs of the finite non-abelian
groups of order up to 14 which include the symmetric and dihedral groups have been determined
in [6]. Recently, Ali et al. [1] found the general Randić and Harary indices of the power graphs of
finite cyclic and non-cyclic groups of order pq, dihedral and generalized quaternion groups. Other
types of graphs that have been receiving significant attention recently are the commuting graph
of finite groups, the non-commuting graph of finite groups [23], and the zero-divisor graph of
certain commutative rings [26].

3 The Vertex Degree of Power Graphs

This section presents the generalization of the power graph associated to some finite groups.
Then, their vertex degree, denoted as σ, are found and stated in propositions and theorems.

Proposition 3.1. [7] Let H = ⟨a⟩ be a subgroup of the dihedral group D2α, where integer α ≥ 3. The
group representation is D2α

∼= ⟨aα = b2 = 1, bab = a−1⟩. Suppose that K(H) is the complete graph
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associated with subgroup H . Then, the power graph of D2α, denoted as Γ(D2α) can be illustrated as in
Figure 1.

Figure 1: A power graph ofD2α.

Proposition 3.2. [2] The vertex degree in the power graph of D2α, where integer α ≥ 3 is,

1. σ(e) = 2α− 1,

2. σ(ai) = α− 1, 1 ≤ i ≤ α− 1,

3. σ(aib) = 1, 0 ≤ i ≤ α− 1.

Proposition 3.3. [7] Let H = ⟨a⟩ be a subgroup of the generalized quaternion group Q4α, where integer
α ≥ 2. The group representation is Q4α

∼= ⟨aα = b2, a2α = b4 = 1, bab = a−1⟩. Suppose that K(H) is
the complete graph associated with the subgroupH . Then, the power graph of Q4α, denoted as Γ(Q4α) can
be illustrated as in Figure 2.

Figure 2: A power graph of Q4α.
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Proposition 3.4. The vertex degree in the power graph of Q4α, where integer α ≥ 2 is,

1. σ(e) = deg(aα) = 4α− 1,

2. σ(ai\aα) = 2α− 1, 1 ≤ i ≤ 2α− 1,

3. σ(aib) = 3, 0 ≤ i ≤ 2α− 1.

Proof. The generalized quaternion group of order 4α, α ≥ 2, consists of two generators a and b,
where aα = b2, a2α = b4 = e and it satisfies the relation bab = a−1. Since the element e and aα are
the power of all elements in Q4α, then it is adjacent to all other elements.

Hence, deg(e) = deg(aα) = 4α − 1. Meanwhile, elements ai for 1 ≤ i ≤ 2α − 1 are adjacent to
each other since they are cyclic, ⟨a⟩. So that, deg(ai\aα) = 2α−1. Lastly, σ(aib) = 3, 0 ≤ i ≤ 2α−1
since aib is the power of {e}, {aα} and {ai+2b}.

Proposition 3.5. Let Γ be a power graph of the generalized quaternion groups, Q4α. The number of edges
in Γ, where α ≥ 2 is |ϵ(Γ)| = α(2α− 1) + 5α.

Proof. Based on Figure 2, the power graph of Q4α is made up of a complete graph for elements

ai, 1 ≤ i ≤ 2α − 1. By Proposition 3.1, the total edges of that complete graph is 2α(2α− 1)

2
.

Then, {e} and {aα} connects with another 2α elements. Meanwhile, {aib} is adjacent to {ai+2b}

for 0 ≤ i ≤ 2α− 1. Hence, |ϵ(Γ)| = 2α(2α− 1)

2
+ 2α+ 2α+ α = α(2α− 1) + 5α.

Proposition 3.6. LetH = ⟨a⟩ be a subgroup of the quasi-dihedral groupQD2α , where integer α ≥ 4, with
group representation QD2α

∼= ⟨a, b|a2(α−1)

= b2 = e, bab = a−1⟩. Suppose that K(H) is the complete
graph associated with the subgroup H . Then, the power graph of QD2α , denote as Γ(QD2α) is depicted as
in Figure 3.

Figure 3: A power graph of QD2α .

Proof. All vertices of Γ(QD2α) are adjacent to the identity element e ofQD2α . Since ai is the power
of one another, then they are adjacent to each other for 1 ≤ i ≤ 2α−1 − 1. Then, a2α−2 is adjacent
to arb, where r is odd number up to 2α−1 − 1. Lastly, there is an edge connecting two vertices alb
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and asb, where 3 ≤ l ≤ 2α−2 − 1 and 5 ≤ s ≤ 2(α−1) − 1, and both l and s must be odd number.
Therefore, the power graph of QD2α is displayed in Figure 3.

Proposition 3.7. The vertex degree in the power graph of QD2α , where α ≥ 4, is,

1. σ(e) = 2α − 1,

2. σ(ai\a2α−2

) = 2α−1 − 1, 1 ≤ i ≤ 2α − 1,

3. σ(aib) = 1, i = 0 and 1 ≤ i ≤ 2α − 1, where i is even,

4. σ(ajb) = 3, 1 ≤ i ≤ 2α − 1, where j is odd,

5. σ(a2α−2

) = 3(2α−2)− 1.

Proof. The quasi-dihedral group of order 2α, where α ≥ 4, consists of two generators a and b,
in which a2

α−1

= b2 = e and it satisfies the relation bab = a2
α−2−1. Since an element e is the

power of all elements in QD2α , then it is adjacent to all other elements. Hence, σ(e) = 2α − 1.
Meanwhile, elements ai for 1 ≤ i ≤ 2α − 1 are adjacent to each other since they are cyclic, ⟨a⟩. So
that, σ(ai\a2α−2

) = 2α−1 − 1. σ(aib) = 1 for i = 0 and 1 ≤ i ≤ 2α − 1, where i is even, since {e}
is the only power for {aib}, while σ(ajb) = 3 for 1 ≤ j ≤ 2α − 1, where j is odd, since {ajb} is
the power of {e}, {a2α−2} and {aj+4b}. Lastly, σ(a2α−2

) = 3(2α−2) − 1 since the element a2α−2 is
adjacent to all vertices except aib, where i is even.

4 Sombor Index of the Power Graph for Finite Groups

In this section, themain results on the Sombor index of the power graph associated to the three
finite non-abelian groups are stated. The Sombor index is denoted as SO while the power graph
is denoted as PO. A graphical presentation of their Sombor index values is shown in Figure 4.

Theorem 4.1. Let G be D2α, α ≥ 3. Then,

SO(POG) = (α− 1)
√
α(5α− 6) + 2 +

√
2α

√
2α(α− 1) + 1 +

√
2

2
(α− 1)2(α− 2).

Proof. Based on Figure 1 and Proposition 3.2, there are α − 1 edges which degree 2α − 1 and
α − 1 vertices are adjacent. α edges that have degree 2α − 1 and 1 vertices are adjacent, and
(α− 1)

(α
2
− 1

)
edges that connects vertices of degrees α− 1. Therefore, by the definition of SO,

SO(POG) =
∑

r,s∈ϵ(ΓG)

√
σ(r)2 + σ(s)2

= (α− 1)
√
(2α− 1)2 + (α− 1)2 + α

√
(2α− 1)2 + 12

+ (α− 1)
(α
2
− 1

)√
(α− 1)2 + (α− 1)2

= (α− 1)
√
α(5α− 6) + 2 +

√
2α

√
2α(α− 1) + 1 +

√
2

2
(α− 1)2(α− 2).
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Theorem 4.2. Let G be Q4α, α ≥ 2. Then,

SO(POG) = 4
√
2
[
(α− 1)

√
2α(5α− 3) + 1 + α

√
4α(2α− 1) + 5

]
+ 2

√
2(2α2(α− 3) + 9α− 2).

Proof. Based on Figure 2 and Proposition 3.4, there are degree 4α − 1 and 2α − 1 vertices are
connected by 2(2α − 2) edges. Then, two vertices of degrees 4α − 1 are connected by an edge.
(α − 1)(2α − 3) edges connect two vertices of degrees 2α − 1 and 4α edges connect two vertices
of degree 4α− 1 and 3. In addition, there are also α edges that connect two vertices of degrees 3.
Therefore, by definition of SO,

SO(POG) =
∑

r,s∈ϵ(ΓG)

√
σ(r)2 + σ(s)2

= 2(2α− 2)
√
(4α− 1)2 + (2α− 1)2 + 1

√
(4α− 1)2 + (4α− 1)2

+ (α− 1)(2α− 3)
√
(2α− 1)2 + (2α− 1)2 + 4α

√
(4α− 1)2 + 32

+ α
√
32 + 32

= 4
√
2
[
(α− 1)

√
2α(5α− 3) + 1 + α

√
4α(2α− 1) + 5

]
+ 2

√
2(2α2(α− 3) + 9α− 2).

Theorem 4.3. Let G be QD2α , α ≥ 4. Then,

SO(POG) = (2α−1 − 2)
[√

(2α − 1)2 + (2α−1 − 1)2 +
√
(3× 2α−2 − 1)2 + (2α−1 − 1)2

]
+ 2α−2

[√
(2α − 1)2 + 1 +

√
(2α − 1)2 + 9 +

√
(3× 2α−2 − 1)2 + 9

]
+
√
(2α − 1)2 + (3× 2α−2 − 1)2 +

√
2

2
(2α−1 − 3)(2α−1 − 2)(2α−1 − 1)

+
√
2(3)(2α−3).

Proof. Based on Figure 3 and Proposition 3.7, there are 2α−1 − 2 edges connect the degree 2α − 1
and 2α−1 − 1 vertices, also degree 3× 2α−2 − 1 and 2α−1 − 1 vertices. Meanwhile, there are 2α−2

edges that connect vertices of degree 2α−1 and 1, 2α−1 and 3, and also 3×2α−2−1 and 3. Then,
there is an edge that connect two vertices of 2α − 1 and 3 × 2α−2 − 1. 2α−3 edges connect two

vertices of degrees 3. Lastly, there are (2α−1 − 2)(2α−1 − 3)

2
edges that connect to two vertices of

degrees 2α−1 − 1. Therefore, by definition of SO and after simplifies,

SO(POG) =
∑

r,s∈ϵ(ΓG)

√
σ(r)2 + σ(s)2

= (2α−1 − 2)
[√

(2α − 1)2 + (2α−1 − 1)2 +
√
(3× 2α−2 − 1)2 + (2α−1 − 1)2

]
+ 2α−2

[√
(2α − 1)2 + 1 +

√
(2α − 1)2 + 9 +

√
(3× 2α−2 − 1)2 + 9

]
+
√
(2α − 1)2 + (3× 2α−2 − 1)2 +

√
2

2
(2α−1 − 3)(2α−1 − 2)(2α−1 − 1)

+
√
2(3)(2α−3).
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The graphical presentation of the values of SO(PO) forD2α andQ4α is shown in the following
figures.

Figure 4: A graphical presentation of SO(POD2α
) and SO(POQ4α

).

Figure 5: A graphical presentation of SO(POQD2α
).

Figures 4 shows that the Sombor index value rises with the growing order of the group, as the
graph’s degree increases. In addition, the same order of D2α and Q4α gives different complexity
of power graph, where the power graph of Q4α have more vertex degrees than D2α’s. Therefore,
the SO(PO) for Q4α is higher thanD2α’s. Meanwhile, in Figure 5, as the value of α increases, the
SO(PO) for QD2α increases.

5 Sombor Polynomial of the Power Graph for Finite Groups

This section presents the Sombor polynomial of the power graph, denoted as SO(POG;x) for
D2α, Q4α, and QD2α in Theorems 5.1, 5.2 and 5.3.

Theorem 5.1. Let G be D2α, α ≥ 3. Then,

SO(POG;x) =
α− 1√

α(5α− 6) + 2
xα(5α−6)+2 +

α√
4α(α− 1) + 2

x4α(α−1)+2

+
(α− 1)(α− 2)

2
√
2(α− 1)

x2(α−1)2 .

Proof. ByProposition 3.1 and Figure 1, the number of edges that connect two vertices are explained
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in the proof of Theorem 4.1. Hence, by Definition 2.1,

SO(POG;x) =
∑

r,s∈ϵ(POG)

1√
σ(r)2 + σ(s)2

xσ(r)2+σ(s)2

=
α− 1√

(2α− 1)2 + (α− 1)2
x(2α−1)2+(α−1)2 +

α√
(2α− 1)2 + 12

x(2α−1)2+12

α(α−1)
2 − (α− 1)√

(α− 1)2 + (α− 1)2
x(α−1)2+(α−1)2

=
α− 1√

α(5α− 6) + 2
xα(5α−6)+2 +

α√
4α(α− 1) + 2

x4α(α−1)+2

+
(α− 1)(α− 2)

2
√
2(α− 1)

x2(α−1)2 .

Theorem 5.2. Let G be Q4α, α ≥ 2. Then,

SO(POG;x) =
4α− 4√

4α(5α− 3) + 2
x4α(5α−3)+2 +

4α√
8α(2α− 1) + 10

x8α(2α−1)+10

x2(4α−1)2

√
2(4α− 1)

+
(α− 1)(2α− 3)√

2(2α− 1)
x2(2α−1)2 +

α

3
√
2
x18.

Proof. ByProposition 3.3 and Figure 2, the number of edges that connect two vertices are explained
in the proof of Theorem 4.2. Hence, by Definition 2.1 and the same explanation as in the proof of
Theorem 4.2,

SO(POG;x) =
∑

r,s∈ϵ(POG)

1√
σ(r)2 + σ(s)2

xσ(r)2+σ(s)2

=
4α− 4√

4α(5α− 3) + 2
x4α(5α−3)+2 +

4α√
8α(2α− 1) + 10

x8α(2α−1)+10

x2(4α−1)2

√
2(4α− 1)

+
(α− 1)(2α− 3)√

2(2α− 1)
x2(2α−1)2 +

α

3
√
2
x18.

Theorem 5.3. Let G be QD2α , α ≥ 4. Then,

SO(POG;x) =(2α−1 − 2)

[
x5(22α−2)−3(2α)+2√
5(22α−2)− 3(2α) + 2

+
x11(22α−2)−5(2α−1)+2√
11(22α−2)− 5(2α−1) + 2

]

+ 2α−2

[
x(2α−1)2 + 1√
(2α − 1)2 + 1

+
x(2α−1)2 + 9√
x(2α−1)2 + 9

+
x(3×2α−2−1)2√

3× 2α−2 − 1)2 + 9

]

+
x25(22α−4)−72α−1+2√
25(22α−4)− 72α−1 + 2

+
22α−3 − 5(2α−2) + 3√

2(2α−1 − 1)
x2(2α−1−1)2 +

2α−3

3
√
2
x18.

Proof. ByProposition 3.6 and Figure 3, the number of edges that connect two vertices are explained
in the proof of Theorem 4.3. Hence, by Definition 2.1, after simplified, the SO(POG) is as stated
above.
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Next, an example of the SO(PO) and SO(POG;x) forD8, where α = 4 is stated in the follow-
ing, by using the main results that have been obtained.

By Theorem 4.1,

SO(POG) = (α− 1)
√
α(5α− 6) + 2 +

√
2α

√
2α(α− 1) + 1 +

√
2

2
(α− 1)2(α− 2)

= (4− 1)
√
4(5(4)− 6) + 2 +

√
2(4)

√
2(4)(4− 1) + 1 +

√
2

2
(4− 1)2(4− 2)

= 63.8595.

By Theorem 5.1,

SO(POG;x) =
α− 1√

α(5α− 6) + 2
xα(5α−6)+2 +

α√
4α(α− 1) + 2

x4α(α−1)+2

+
α(α− 3) + 1

2
√
2(α− 1)

x2(α−1)2

=
4− 1√

4(5(4)− 6) + 2
x4(5(4)−6)+2 +

4√
4(4)(4− 1) + 2

x4(4)(4−1)+2

+
4(4− 3) + 1

2
√
2(4− 1)

x2(4−1)2

=

√
2

2
x58 +

2
√
2

5
x50 +

5
√
2

12
x18.

6 Conclusion

This paper has presented the generalization of the power graph for the quasi-dihedral groups
and the general formula for the Sombor index and Sombor polynomial of the power graphs asso-
ciated to some finite non-abelian groups. The results are expressed in terms of α, depending on
the order of the group. The results are useful to analyze and estimate the chemical and biological
molecular properties by finding their molecular graph or using point groups of certain order by
checking the isomorphism between the molecular structures and the finite groups. In the future,
other types of topological indices for various types of graphs can be investigated. Another new
type of topological index is also possible to be developed.
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